skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zhang, Jiayao"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Shapley value provides a unique way to fairly assess each player's contribution in a coalition and has enjoyed many applications. However, the exact computation of Shapley value is #P-hard due to the combinatoric nature of Shapley value. Many existing applications of Shapley value are based on Monte-Carlo approximation, which requires a large number of samples and the assessment of utility on many coalitions to reach high quality approximation, and thus is still far from being efficient. Can we achieve an efficient approximation of Shapley value by smartly obtaining samples? In this paper, we treat the sampling approach to Shapley value approximation as a stratified sampling problem. Our main technical contributions are a novel stratification design and two sample allocation methods based on Neyman allocation and empirical Bernstein bound, respectively. Experimental results on several real data sets and synthetic data sets demonstrate the effectiveness and efficiency of our novel stratification design and sampling approaches. 
    more » « less